Safety is a critical concern in motion planning for autonomous vehicles. Modern autonomous vehicles rely on neural network-based perception, but making control decisions based on these inference results poses significant safety risks due to inherent uncertainties. To address this challenge, we present a distributionally robust optimization (DRO) framework that accounts for both aleatoric and epistemic perception uncertainties using evidential deep learning (EDL). Our approach introduces a novel ambiguity set formulation based on evidential distributions that dynamically adjusts the conservativeness according to perception confidence levels. We integrate this uncertainty-aware constraint into model predictive control (MPC), proposing the DRO-EDL-MPC algorithm with computational tractability for autonomous driving applications. Validation in the CARLA simulator demonstrates that our approach maintains efficiency under high perception confidence while enforcing conservative constraints under low confidence.